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A B S T R A C T

The advent of computer graphic processing units, improvement in mathematical models and availability of big data has allowed artificial intelligence (AI) using
machine learning (ML) and deep learning (DL) techniques to achieve robust performance for broad applications in social-media, the internet of things, the automotive
industry and healthcare. DL systems in particular provide improved capability in image, speech and motion recognition as well as in natural language processing. In
medicine, significant progress of AI and DL systems has been demonstrated in image-centric specialties such as radiology, dermatology, pathology and ophthal-
mology. New studies, including pre-registered prospective clinical trials, have shown DL systems are accurate and effective in detecting diabetic retinopathy (DR),
glaucoma, age-related macular degeneration (AMD), retinopathy of prematurity, refractive error and in identifying cardiovascular risk factors and diseases, from
digital fundus photographs. There is also increasing attention on the use of AI and DL systems in identifying disease features, progression and treatment response for
retinal diseases such as neovascular AMD and diabetic macular edema using optical coherence tomography (OCT). Additionally, the application of ML to visual fields
may be useful in detecting glaucoma progression. There are limited studies that incorporate clinical data including electronic health records, in AL and DL algorithms,
and no prospective studies to demonstrate that AI and DL algorithms can predict the development of clinical eye disease. This article describes global eye disease
burden, unmet needs and common conditions of public health importance for which AI and DL systems may be applicable. Technical and clinical aspects to build a DL
system to address those needs, and the potential challenges for clinical adoption are discussed. AI, ML and DL will likely play a crucial role in clinical ophthalmology
practice, with implications for screening, diagnosis and follow up of the major causes of vision impairment in the setting of ageing populations globally.

1. Introduction

Artificial intelligence (AI) was conceptualized in 1956, after a
workshop at Dartmouth College (Fig. 1) (McCarthy et al., 1955). The
term ‘machine learning’ (ML) was subsequently coined by Arthur Sa-
muel in 1959 and stated that “the computer should have the ability to
learn using various statistical techniques, without being explicitly
programmed” (Samuel, 1959). Using ML, the algorithm can learn and
make predictions based on the data that has been fed into the training
phase, using either a supervised or un-supervised approach. ML has
been widely adopted in applications such as computer vision and pre-
dictive analytics using complex mathematical models. With the advent

of graphic processing units (GPUs), advances in mathematical models,
the availability of big datasets and low cost sensors, deep learning (DL)
techniques subsequently, has sparked tremendous interest and been
applied in many industries (LeCun et al., 2015). DL utilizes multiple
processing layers to learn representation of data with multiple levels of
abstraction (Lee et al., 2017b). DL approaches use complete images,
and associate the entire image with a diagnostic output, thereby elim-
inating the use of “hand-engineered” image features. With improved
performance (Abramoff et al., 2016; Gulshan et al., 2016), DL is now
widely adopted in image recognition, speech recognition and natural
language processing.

In medicine, the most robust AI algorithms have been demonstrated
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in image-centric specialties, including radiology, dermatology, pa-
thology and increasingly so in ophthalmology (Schmidt-Erfurth et al.,
2018; Ting et al., 2019). DL algorithms were found to be effective in
detecting pulmonary tuberculosis from chest radiographs (Lakhani and
Sundaram, 2017; Hwang et al., 2018), and to differentiate malignant
melanoma from benign lesions on digital skin photographs (Esteva
et al., 2017). In ophthalmology, there have been two major areas in
which DL systems have been applied. First, DL systems have been
shown to accurately detect diabetic retinopathy (DR) (Abramoff et al.,
2016; Gulshan et al., 2016; Gargeya and Leng, 2017; Ting et al., 2017),
glaucoma (Ting et al., 2017, Li et al., 2018a), age-related macular de-
generation (AMD) (Burlina et al., 2017; Ting et al., 2017; Grassmann
et al., 2018), retinopathy of prematurity (ROP) (Brown et al., 2018),
and refractive error (Varadarajan et al., 2018), from digital fundus
photographs. Cardiovascular risk factors such as blood pressure have
also been accurately predicted from fundus photographs (Poplin et al.,
2018; Ting et al., 2019). Second, there are new studies that show sev-
eral retinal conditions [e.g., choroidal neovascular membrane [CNV],
earlier stages of AMD, and diabetic macular edema (DME)] (Lee et al.,
2017b) can also be detected accurately with AL algorithms applied on
optical coherence tomography (OCT) images (De Fauw, Ledsam et al.,
2018; Kermany et al., 2018).

To date, several AI review articles have been published thus far,
summarizing the deep learning technologies in Ophthalmology.
Nevertheless, none of which have focused on the technical and clinical
considerations in building deep learning (DL) algorithms for fundus
photographs and OCTs. This objective of article, therefore, is to de-
scribe the important technical and considerations of building DL algo-
rithms in the research setting, as well as the deployment of these al-
gorithms in the clinical settings.

2. Development of DL algorithms: technical consideration

In order to build a robust DL system, it is important to have 2 main
components – the ‘brain’ (technical networks – Convolutional Neural
Network [CNN]) and the ‘dictionary’ (the datasets). This section will
focus on the technical aspects of building a DL algorithm, including the
understanding of the fundamental of a CNN, software framework,
network architectures, datasets selection, characteristics, performance
metrics, reference standard and the visualization techniques to improve
the explainability of the algorithms (Table 1).

2.1. Fundamentals of a CNN

A CNN is a deep neural network consisting of a cascade of proces-
sing layers that resemble the biological processes of the animal visual
cortex. It transforms the input volume into an output volume via a
differentiable function. Inspired by Hubel and Weisel (Hubel and
Wiesel, 1968), each neuron in the visual cortex will respond to the
stimulus that is specific to a region within an image, similar to how the
brain neuron would respond to the visual stimuli, that will activate a
particular region of the visual space, known as the receptive field. These
receptive fields are tiled together to cover the entire visual field. Two
classes of cells are found in this region – simple vs complex cells.

Broadly, the CNN can be divided into the input, hidden (also known
as feature-extraction layers) and output layers (Fig. 2A). The hidden
layers usually consist of convolutional, pooling, fully connected and
normalization layers, and the number of hidden layers will differ for
different CNNs. The input layer specifies the width, height and the
number of channels (usually 3 channels – red, green and blue). The
convolutional layer is the core building block of a CNN, transforming
the input data by applying a set of filters (also known as kernels) that
acts as the feature detectors. The filter will slide over the input image to
produce a feature map (as the output). A CNN learns the values of these
filters weights on its own during the training process, although the
specific parameters such as number of filters, filter size, network ar-
chitecture still need to be set prior to that. Additional operations called
activations (for example ReLU or Rectified Linear Unit) are used after
every convolution operation. For pooling, the aim is to reduce the di-
mensionality of each feature map and make it somewhat spatially in-
variant, and retain the most important information. Pooling can be
divided into different types: maximum, average and minimum. In the
case of maximum pooling, the largest element from the rectified feature
map will be taken (Fig. 2B). The output from the convolutional and
pooling layers represent the high-level features of the input image. The
purpose of the fully connected layer is to use these high-level features to
classify the input image into various classes based on the training da-
taset. Following which, backpropagation is conducted to compute the
network weights and uses the gradient descent to update all filters and
parameter values to minimize the output error. This process will be
repeated many times during the training process.

2.2. Software frameworks

CNNs are commonly implemented in several popular software fra-
meworks. Early development in these past 10 years was enabled by the
availability of frameworks like Caffe,74 Torch, 13 and Theano75. More
recently, Python-based frameworks such as TensorFlow76 and
PyTorch13 have gained more popularity among the deep learning
community. High-level application programming interface (APIs) such

Fig. 1. The introduction of artificial intelligence (AI) in 1950's, followed by
machine learning in 1980's and deep learning (DL) in 2010's. Machine learning
is a subset of AI, involving using statistical techniques to help computers to
learn without being explicitly programmed. With the advent of graphic pro-
cessing unit with much improved processing power, DL is the state-of-art
technique that has revolutionized the machine learning field over the past few
years. It has now been widely adopted in image recognition, speech recognition
and natural language processing domains.

Table 1
Ten steps in building an artificial intelligence system for medical imaging
analysis.

1. Identify a clinical unmet need or research question
2. Selection of datasets - splitting of training, validation and testing
3. Selection of CNNs (e.g. AlexNet, VGGNet, ResNet, DenseNet, Ensemble)
4. Selection of software to build the DL systems - Keras, Tensorflow, Cafe, Python
5. The use of transfer learning/pre-training on ImageNet
6. The use of backpropagation for tuning and optimization
7. Reporting of the characteristics of datasets - patients' demographics, retinal image

and disease characteristics
8. Reporting of the diagnostic performance on local and external validation datasets -

area under curve, sensitivity and specificity, accuracy and kappa
9. The use of heat map to explain the diagnosis - different types of heat map

(occlusion test, soft attention map, integrated gradient method)
10. Novel methods in retinal imaging - GAN, VAE and its potential clinical

applications

*GAN – generative adversarial network; VAE – variational autoencoder
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as Keras12 or Lasagne have also made it much easier to develop DL
systems, by simplifying the existing networks architectures and pre-
trained weights. Given that this is more convenient for the purposes of
transfer learning and fine tuning, they could be considered as starting
points for implementation for new users.

2.3. Common network architectures and transfer learning

AlexNet, first described in 2012 with 5 convolutional layers, has
been the most widely used CNN, after winning the ImageNet Large
Scale Visual Competition Recognition (Krizhevsky et al., 2012). Fol-
lowing which, more CNNs with deeper layers and unique features were
described subsequently. Each CNN can also have different versions and
layers, for example VGGNet (16 or 19 layers), Inception V1 to V4 (27
layers), ResNet (18, 50, 152 or even up to 1202 layers with stochastic
depth) and DenseNet (40, 100, 121, 169 layers). Compared to AlexNet,
the newer networks have unique features to help improve performance,
including the addition of more layers, smaller convolutional filters, skip
connections, repeated modules with more complex/parallel filters,
bottleneck connection and dropout. Although deeper CNNs (e.g. ResNet
and DenseNet) have been reported to achieve improved performance,
older architectures (e.g. VGGNet and Inception) have consistently
shown comparable outcomes in medical imaging analysis. Apart from
the classification tasks, U-net, first described by Olaf Ronneberger, has
achieved particular success in performing segmentation tasks on optical
coherence tomography (OCT), given its flexibility in input sizes and
dimensionality (Ronneberger et al., 2015).

In order to further boost performance, multiple deep neural net-
works are commonly trained and ensembled. Transfer learning with
pretrained weights has also been reported to aid training and perfor-
mance, especially with smaller datasets. Transfer learning is the process
of reusing models developed for other applications (e.g. for performing
full image classification from ImageNet images) and further refining
these weights for a different target domain (e.g. detection of AMD on
fundus images). In this approach, called ‘fine-tuning’, the original net-
work weights are used as a starting point and further optimized (fine-
tuned) to solve another task (such as going from an original domain, i.e.
common everyday images found in ImageNet, to retinal imaging). The
approach may also involve selectively freezing some of the network
layers’ weights (e.g. early layers usually encode low level feature
computation that are likely to be universally applicable across do-
mains), and selectively fine-tuning other layers (e.g. mid-level con-
volutional or higher-level fully connected layers, which encode more
domain-specific features).

2.4. Pre-processing and gradability

A pre-processing algorithm is crucial in standardizing the input of a
retinal image, given that different retinal cameras may have different
characteristics (e.g. a black border surrounding the retinal image, cir-
cular vs rectangular image and etc.). The standardization of the input
images (contrast adjustment and auto-cropping of the image borders)
may help to optimize the training and testing of a DL algorithm.

It is important for a DL algorithm to assess the image quality of a
retinal image using the gradability algorithm, given that a suboptimal
retinal image may affect the diagnostic outcome. This is especially
important when a DL algorithm is being deployed in the real-world
settings, where the patients may be uncooperative, have small pupils or
cataracts. On the other hand, one needs to be also cautious in setting the
appropriate threshold of this algorithm, as the ungradable retinal
images may result in the direct referrals to the tertiary eye care settings.
If the criteria for gradability is too stringent, this may result in many
unnecessary referrals.

2.5. Training, validation and testing datasets

The training and development phase usually is split into training,
validation and testing datasets. These datasets must not intersect; an
image that is in one of the datasets (e.g., training) must not be used in
any of the other datasets (e.g., validation). Ideally, this non-intersection
should extend to patients. The general class distribution for the targeted
condition should be maintained in all these datasets.

Training dataset: Training of deep neural nets is generally done in
batches (subsets) randomly sampled from the training dataset. The
training dataset is what is used for optimizing the network weights via
backpropagation.

Validation dataset: Validation is used for parameter selection and
tuning, and is customarily also used to implement stopping conditions
for training.

Testing dataset: Finally, the reported performance of the AI algo-
rithm should be computed exclusively using the selected optimized
model weights on the testing datasets. It is important to test the AI
system using independent datasets, captured using different devices,
population and clinical settings. This will ensure the generalizability of
the system in the clinical settings.

2.6. Datasets characteristics

For any AI study, particularly imaging studies, it is important to

Fig. 2. The input, feature-extraction layers (hidden layer) and classification (output) layers of a convolutional neural network (CNN). The feature extraction layers
consist of convolution layer, Rectified Linear Unit (ReLU) layer and Pooling
Fig. 2B: For max pooling, the largest number within a 2x2 rectified feature map will be chosen to be the representative number on the feature map (output).
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demonstrate the population in which the DL system was developed and
tested on. The reporting of dataset characteristics, including basic de-
mographics (e.g., age, gender, ethnicity) and imaging data platform,
size of field of view, reference standard, are important. This is espe-
cially so because DL systems can predict additional features that are not
discernible to manual inspection like age and gender (Poplin et al.,
2018). These characteristics might be augmented by including the
systemic factors (e.g. blood pressure, blood sugar level etc.) for vascular
conditions such as DR. Recruitment methods, exclusion criteria, and a
statistical analysis plan must be documented before the recruitment of
the first subject, a design called preregistration. Results must focus on
the intent-to-screen population, in which every recruited subject is
important, so that opportunistic exclusion of subjects and endpoints can
be avoided (Wicherts et al., 2016). Reference standards, also called
‘truth’, can be, in order of increasing external validity and decreasing
intra- and inter-observer variability, created by individual clinicians,
aggregated clinician opinion (via adjudication or voting), or reading
centers (Quellec and Abramoff, 2014; Wong and Bressler, 2016).

2.7. Reference standard

In order to report the diagnostic performance of an AI system, gold
standard or reference standard (also known as ground truth) plays a
pivotal role. In ophthalmology, the reference standard/s are usually
ophthalmologists, reading center graders, non-physician professional
trained technicians, or optometrists. In terms of examination methods,
it could be done as clinic-based examinations, or image-based ex-
amination. When examining the outcome metrics, it is also important to
evaluate the design and technical method of a DL agorithm, versus the
reference standards. For example, a DL algorithm, if developed using 1-
field fundus photograph, will underperform when it compares against
the reference standard that uses wide field fundus photography or 7-
field 30° retinal photography. Lastly, many conditions have different
classifications and it is important to standardize these gradings prior to
the training or testing of the DL algorithms. More details will be dis-
cussed under the clinical considerations sections.

2.8. Performance metrics

In terms of the performance metrics, the most commonly used is the
area under the receiver's operator characteristics curve (AUC), com-
puted using sensitivity (also known as recall) and specificity. In order to
ascertain the true performance of an AI system, it is important to report
the AUC of testing datasets (locally and externally), using a pre-set
operating threshold (i.e., sensitivity or specificity). If the operating
threshold is not set suitably, an AI system with good AUC (e.g., >0.90)
potentially could have suboptimal sensitivity or specificity, resulting in
adverse events within clinical settings and compromising patients'
safety. Apart from AUC, other parameters should include positive pre-
dictive value (also known as precision), negative predictive value or
Cohen Kappas. Lastly, many studies utilize accuracy as one of the main
measurement outcomes. Similar to AUC, the reporting of accuracy
could be potentially ‘over-optimistic’ given that it takes into account
both true positive and true negative as the nominator, with true and
false positive, and true and false negative as the denominator. If a da-
taset contains only a few positive images and the AI system under-de-
tect them, the reported diagnostic accuracy will be high, although the
sensitivity will be very poor. Thus, for these reasons, the AI study
should state AUC, sensitivity and specificity as the bare minimum. For
assessment of segmentation accuracy, the dice coefficient is commonly
used by the ML community. It measures the overlap between automated
and “gold standard” manual segmentation, or the Jaccard index (“in-
tersection over union”) (Anwar et al., 2018). In the clinical literature,
the agreement between automated and manual segmentation is most
commonly measured using Bland-Altman plots (Bunce, 2009).

2.9. Methods to explain the diagnosis

After creating a robust DL algorithm using the above approaches, it
is important for the DL algorithms to then explain its rationale for di-
agnosis, in order to assist the physicians to highlight the abnormal areas
on the images, and to educate/councel the patients about their diag-
nosis (Fig. 3). DL systems are commonly referred to as a ‘black-box’

Fig. 3. The workflow of a deep learning system in detecting referable diabetic retinopathy and age-related macular degeneration, further demonstrated by the heat
map.
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(Carin and Pencina, 2018), impacting the adoption of such technology
within clinical settings. Nevertheless, the recent technical advancement
in the visualization maps may provide a solution to this. Visualization
of the network workings and activation can be achieved using several
methods, for example occlusion testing, integrated gradients and soft
attention. It allows the generation of overlay highlights that show
where the network is looking when it renders a classification. Figs. 3
and 4 demonstrates some of the visualization techniques used by dif-
ferent AI groups to highlight the abnormal areas in the retinal images
(Poplin et al., 2018).

3. Deployment of DL algorithms: clinical considerations

By 2050, the world's population aged 60 years and older is esti-
mated to be 2 billion, up from 900 million in 2015, with 80% of whom
living in low- and middle-income countries. People are living longer,
and the pace of ageing is much faster than in the past (Divo et al.,
2014). In a systematic review (Bourne et al., 2017), the number of
people with visual impairment and blindness are growing, given the
ageing population and growth of the population. Of these, DR, glau-
coma, AMD are found to be the major causes for moderate to severe
vision loss (Flaxman et al., 2017). Population expansion also creates
pressure to screen for important causes of childhood blindness such as
retinopathy of prematurity (ROP), refractive error, and amblyopia
(Wheatley et al., 2002). In order to rectify the manpower and expertise
shortage, DL algorithms may be utilized as alternative screening tools.
Nevertheless, it is important to consider the various clinical factors
associated with each eye conditions, in order to ensure appropriate
deployment and implementation of these DL algorithms within the
clinical practice.

3.1. Diabetic retinopathy

Over the past 24 months, many AI groups have published various

studies in DR screening (Table 2), with most reporting robust diagnostic
performance in either detecting referable DR or any DR. It is important
to understand the clinical implications with respect to the technical
design of the individual DL algorithms in DR screening.

3.1.1. DR classifications
For DR model outputs, it can be either a binary or multi-class

classification tasks. Most of the models have been trained to detect
referable DR defined as moderate non-proliferative DR (NPDR) or
worse and/or DME because it is at this threshold that many guidelines
suggest closer follow up (rather than follow up in a year). At present,
there are several DR classifications with variable definitions for DR
severity levels. These include the International Clinical Diabetic
Retinopathy Severity Scales (ICDRSS), International Clinical Diabetic
Macular Edema Severity Scales (ICDMESS), National Health Service
(NHS) DR Guidelines, Early Treatment Diabetic Retinopathy Study
(ETDRS) classification and etc. For example, the moderate NPDR in
ICDRSS is different from the moderate NPDR in ETDRS and R2 (pre-
proliferative retinopathy) based on the NHS guidelines. Hence, it is
important to understand the differences between these classifications
prior to the training and testing of the DL algorithms.

3.1.2. Reference standard
Different reference standards were utilized in many published pa-

pers in DR screening thus far, including retinal specialists, ophthal-
mologists, graders from the reading center (e.g. Wisconsin Reading
center). In a pre-registered US FDA clinical trial, Abramoff et al. re-
ported sensitivity of 87.2% (>85%), specificity of 90.7% (>82.5%) in
detection of referable DR (worse than mild DR), and gradability rate of
96.1% were reported (Abramoff et al., 2018), with reference to grading
performed at the Wisconsin Reading Center. Notably, the grading was
performed using stricter criteria - 4 fields retinal examination with OCT
diagnosis of presence/absence of DME, although the DL algorithm was
developed using 2-field and 2-D fundus photographs.

Fig. 4. Deep learning system for detection of glaucomatous optic disc using optic disc imaging.
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The reference standard varies between different AI studies and thus,
it may be challenging to compare one AI system to the other. Moreover,
it is important to test an AI system on the independent datasets using a
pre-fixed operating threshold. For example, Ting et al. developed a DL
algorithm that was tested on 11 independent datasets (Ting et al.,
2017). Using a pre-fixed operating threshold, the DL algorithm
achieved a 90.5% sensitivity and 91.6% specificity on a primary testing
dataset, and AUC of >0.90, sensitivity (>90%) and specificity (>70%)
on the 10 independent datasets, consisting of multi-ethnic population
from Singapore, China, Hong Kong, USA, Mexico and Australia.

3.1.3. Fundus imaging
Given that many DR screening programs worldwide are performing

2-field retinal still photography, many DL algorithms were trained to
detect analyse the optic disc- and macula-centered retinal images (Ting
et al., 2017; Abramoff et al., 2018, Li et al., 2018b). In the low resource
countries, it may be less labour and time consuming to perform 1-field
retinal photography. Using the enhanced DL algorithms developed by
Gulshan et al. (Gulshan et al., 2016), the Google AI has reported
clinically acceptable diagnostic performance for Thailand population
with diabetes (Raumviboonsuk et al., 2019). This is an efficient auto-
mated DR screening method, as most DR changes usually occur in the
posterior pole, although some may occur occasionally at the nasal re-
tina that may not be able to be detected by the 1-field DL algorithm.

3.1.4. Detection of non-DR findings
Another consideration in the development of AI models for DR

screening is how to address non-DR findings. It is common practice that
if there are non-DR findings identified during DR screening that these
findings are reported back to the clinic. However, there is still some
uncertainty and heterogeneity about when these other findings should
be considered referable. In addition, there can be substantial grader
variability in the manual interpretation of fundus images for other
disease. For example, when to refer a suspicious cup-to-disc ratio could
vary from one screening program to another. Ting et al. reported the
development of additional models that also could detect AMD and the
glaucoma-like disc (Ting et al., 2017). There are other publications
(covered later in this review) focused on building models that detect
non-DR diseases separately. Studies looking at both DR and non-DR
findings would be an important area for future development.

3.1.5. Models of care
Several models of care can be considered to implement AI for DR

screening in the clinical practice. It can be either deployed as cloud-
based, office-based or retinal camera-based settings. For cloud-based
setting, this requires a tele-ophthalmology platform to enable the AI
analysis of the retinal images. This is a suitable model for countries (e.g.
Singapore, United Kingdom or United States) that have existing tele-
retinal DR screening programs. The AI can be integrated into this in-
formation technology (IT) platform to help analyse the retinal images.
Should the tele-communication be challenging, the alternative clinical
model is to deploy the AI in an application programing interface (API)
using tablets, laptops or desktops, in an office-based setting. This may
be a more suitable model for the low resource countries where there is
suboptimal internet bandwidth. Lastly, it is also possible to build the AI
algorithm into the retinal camera, providing an instantaneous diagnosis
after the images are captured. However, this approach may potentially
limit the use of such DL algorithm for other retinal cameras that are
currently available in the market.

3.1.6. Screening workflow
AI system can be deployed as a stand-alone fully automated system

or an assistive semi-automated model. This is an important factor to
decide on the operating threshold of a DL algorithm. For the fully au-
tomated system, it is important to take both sensitivity and specificity
into account when the operating threshold is set. While attempting toTa
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aim for high sensitivity, one also needs to ensure that the specificity is
not being highly compromised, resulting in many unnecessary false
positive referrals to the healthcare settings. On the other hand, for
countries with existing DR screening programs with manual graders,
the assistive semi-automated model may be an excellent alternative
approach to reduce the manpower requirement. The DL algorithm can
be set at a high-sensitivity threshold to filter the normal or non-refer-
able retinal images, while the manual graders can perform a secondary
grading on those retinal images that are deemed referable. This hybrid
approach not only can aim for an overall excellent sensitivity and
specificity, but also could potentially reduce the manpower headcount
for manual grading. With some of the visualization techniques dis-
cussed in the previous technical section, this may be a good model for
the secondary graders to look for the disease lesions from the abnormal
scans for confirmation.

3.1.7. Future directions
Large longitudinal clinical trials with AI systems implemented end-

to-end with diverse hardware, population characteristics, and local
environmental will be critical milestones in evaluating the actual safety
and efficacy of AI systems. Furthermore, real-world deployment of
these new systems in multiple settings will be critical in understanding
the full impact of AI on clinical care. For example, increased number of
screenings enabled by automated screening algorithms will increase
demand for follow-up and treatment. Healthcare systems will have to
adapt so that they can manage this additional volume. Moreover, real
time feedback from a model might enable follow-up actions to be in-
itiated at the same visit. If a patient does not need to be referred, this
would also be an opportunity to reinforce and commend the patient on
efforts in managing their disease and emphasize the need for follow-up.
If a patient is found to have referable disease, this allows for timely
follow-up appointments to be scheduled before the patient leaves the
office. There is limited information available regarding the potential
success of such management. Despite the tremendous progress made in
the application of DL for DR screening, there are still many challenges
ahead – from identifying image features that are critical to image
classification to large scale implementation and medicolegal implica-
tion.

3.2. Glaucoma and glaucoma suspect

Apart from DR, many screening programs suggest screening for re-
ferable glaucoma suspects. In a systematic review, glaucoma was shown
to be leading causes of blindness worldwide (Flaxman et al., 2017),
accounting for 2.9 million patients worldwide. The number with glau-
coma is expected to increase up 111.8 million by 2040 (Tham et al.,
2014). For glaucoma, AI plays a pivotal role in screening, diagnosis and
surveillance of the disease.

3.2.1. Challenges in glaucoma and glaucoma suspect definitions
The success of AI using DL system in glaucoma in the screening or

the clinical setting is predicated on an agreed-upon structural and
functional definition of the disease. Certainly, glaucoma is a hetero-
genous condition, especially considering the various anterior segment
features that may be present in the disorder, with the convergent fea-
ture being a characteristic optic nerve appearance that corresponds to
vision loss. One way to characterize this optic neuropathy is to rely on
excavation of the optic nerve head that can be quantified with the cup-
to-disc ratio (CDR). Since disc size and shape can vary among people in
a population and these features also differ across populations, it is
problematic to describe a CDR that defines glaucoma.

The International Society for Geographical and Epidemiological
Ophthalmology (ISGEO) proposes using the upper 97.5th percentile of
vertical CDR or of CDR asymmetry as a standard definition of structural
glaucomatous damage (Foster et al., 2002). This definition is, however,
not sufficient for glaucoma diagnosis, because of the large influence of

disc size (Crowston et al., 2004) and the issues in patients with ab-
normal anatomical configuration of the disc. In addition, measurement
of CDR is biased by large grader-variability because of a lack of a solid
anatomic basis (Chauhan and Burgoyne, 2013).

On OCT retinal nerve fibre layer thickness and ganglion cell com-
plex measurements are used to discriminate glaucoma from healthy
(Savini et al., 2011). More recently minimum rim width as measured
from Bruch's membrane opening has been used as a novel diagnostic
tool in glaucoma (Chauhan et al., 2015). A proposed reference standard
for functional loss from glaucoma is a glaucoma hemifield test (GHT)
outside normal limits and a cluster of 3 contiguous points with assigned
probability of 5% or less on the pattern deviation of a Humphrey visual
field analyzer. These contiguous points should follow a nerve fiber layer
distribution. Comparable functional loss on other visual field (VF)
platforms could be considered. Patients with definite glaucoma would
meet both structural and functional criteria while suspects might meet
only the structural criterion. The ISGEO proposes that patients with disc
haemorrhage, IOP at greater than the 97.5Th percentile or subjects with
occludable angles but normal optic nerves, visual fields, IOP and no
peripheral anterior synechiae also be regarded as suspects. While no
definition of glaucoma is ideal, DL systems can potentially be trained to
identify these phenotypic attributes.

3.2.2. Optic disc imaging
Optic disc fundus imaging is the least expensive imaging modality to

conduct structural assessment of the optic nerve, although the sensi-
tivity and specificity in detecting glaucoma suspect or glaucoma are not
comparable to the combined structural and functional assessment using
more sophisticated imaging devices such as optical coherence tomo-
graphy or Humphrey visual fields.

Given that the optic disc fundus imaging is commonly taken and
analyzed as part of the DR screening exercises, it is important to have a
good DL algorithm in detecting glaucoma± glaucoma suspect from the
color retinal images (Fig. 4). To date, most DL algorithms for disc
suspect are developed using large number of retinal images collected
from DR screening programs (e.g. Ting et al. and Li et al.) (Ting et al.,
2017, Li et al., 2018a). In these 2 studies, the DL algorithms for de-
tection of glaucoma suspect were developed from the optic disc images
(defined as CDR 0.8 or worse and/or glaucomatous changes), with
excellent diagnostic outcome of >90% accuracy (Table 3). These ret-
inal images, however, were graded and assessed in a 2-dimensional
manner without a thorough clinical evaluation with measurement of
intraocular pressure, structural or functional confirmation of the diag-
nosis.

Using 3242 fundus images, Shibota et al. developed a DL algorithm
that is trained and tested with the eyes with confirmed glaucoma, re-
porting an excellent AUC of 0.965 (Shibata et al., 2018). The CNN was
trained to detect focal disc notching, cup excavation, retinal nerve fibre
layer atrophy, disc haemorrhage and peripapillary atrophy, all signs
which may occur at CDRs below pre-selected criteria. Using 1758
Spectral Domain OCT images, Asaoka was also able to detect early
glaucoma with an AUC of 0.937 (Sensitivity= 82.5% and Specifi-
city= 93.9%) (Asaoka et al., 2019). Interestingly ultra-wide scanning
laser ophthalmoscopy is gaining popularity in the detection of DR and
fine optic disc details are captured in these images. Masumoto et al.
used 1379 Optomap images to detect glaucoma overall with 81.3%
sensitivity and 80.2% specificity; values were higher for more severe
glaucoma (Table 3)..(Masumoto et al., 2018)

3.2.3. Visual field
Relative to optic disc photographs or OCT images, the data con-

tained in VF tests have low dimensionality and high noise. Nonetheless
VFs represent an important endpoint in glaucoma clinical trials and VF
findings will likely influence glaucoma diagnosis and guide clinical care
for the foreseeable future. While the GHT on the Humphrey VF re-
presents a supervised algorithm that is useful in defining glaucoma, DL
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systems would be useful to define and quantify patterns of VF loss so
that minimal thresholds for defining glaucoma could be established.
Elze et al. developed an unsupervised algorithm termed archetype
analysis to identify VF loss patterns that include glaucomatous and non-
glaucomatous deficits and provide weighting coefficients for these
patterns (Elze et al., 2015). This algorithm has been validated (Cai
et al., 2017) and has proven useful in augmenting the GHT for the
detection of early functional glaucomatous loss (Wang et al., 2018).
Using an entirely different strategy, Li et al. trained a CNN to learn the
Pattern Deviation probability plots of normal and glaucomatous eyes
and was able to detect glaucoma with 93.2% sensitivity and 82.6 sen-
sitivity (Li, Wang et al., 2018). Yousefi et al. used an alternative
Gaussian mixture and expectation maximization method to decompose
VFs along different axes to detect VF progression (Yousefi et al., 2014).
This approach was as good or superior to current algorithms, including
Glaucoma Progression Analysis, Visual field Index and Mean Deviation
slope, in detecting VF progression.

3.2.4. Clinical forecasting
Kalman filtering (KF) is a ML technique that filters out noise in serial

measures of a parameter to forecast trends over time. Glaucoma is
generally a chronic slowly progressive disease whose trajectory is in-
fluenced by serial IOP, as well as changes in functional and structural
data. Researchers at University of Michigan used longitudinal data on
IOP and VFs to accurately forecast VF progression for participants in the
Collaborative Initial Glaucoma Treatment Study (Schell et al., 2013).
Using a similar approach on a clinical based sample of Japanese normal
tension glaucoma patients, KF was better able to predict 2-year MD
forecast than linear regression of MD (Garcia et al., 2019).

3.2.5. Potential challenges
For glaucoma, the issue is most complicated when DL approaches

shall be applied to the classification. This is related to the difficulties in
defining and diagnosing early stages of the disease. A clear diagnosis of
early cases is often difficult and patients that show signs of structural
disease without visual field defects are called glaucoma suspects (Chang
and Singh, 2016). Confirmation of the diagnosis is only possible long-
itudinally when the patient is either developing corresponding func-
tional loss as identified with visual field testing or progression of
structural loss that exceeds the age-related loss of tissue over time.
Under these circumstances, it is of course difficult to train a glaucoma
network for early cases of glaucoma detection. On the other hand, this
is also a chance for AI to be implemented into glaucoma care, but strong
longitudinal data are required to train the network for correctly iden-
tifying those who will develop glaucoma. Obviously, predictions of
incidence are more difficult than simple classification or staging. In
glaucoma there is an urgent clinical need for such networks because
treatment is possible (Schmidl et al., 2015) and advanced visual field
defect is an important risk factor for transitioning to functional blind
(Peters et al., 2014). Although progression of glaucoma cannot be
halted with current therapeutic interventions slowing down progression
is of utmost importance because it can shift the time to blindness be-
yond the life expectancy of a patient.

In patients with more advanced stages of glaucoma the classification
may be an easier task, although the wide inter-individual variability of
optic nerve anatomy, particularly in myopic eyes, needs to be con-
sidered (Fledelius and Goldschmidt, 2010; Kwon et al., 2017). As such
the training data set needs to consist of a large dataset including a wide
variety of different anatomical configurations of the optic nerve head.
DL may also have applications in glaucoma progression analysis that
likely needs to include structure and function. If clinical decision-
making is based on artificial network progression analysis the general
acceptance will also depend on the availability of outcome data.

3.2.6. Future directions
Currently, much work is needed to improve AI glaucoma detection

algorithms. In the area of imaging, OCT technology demonstrates that
the disc edge is best defined based on Bruch's membrane opening
(BMO) and clinicians are not well trained to find this landmark on
fundus photos (Hong et al., 2018). Thus validation of DL systems to
detect the glaucoma-like disc may require that training sets contain
paired OCT images so that proper ground truth regarding disc margin
contour be established. This will help establish the most accurate
standardized assessment of CDR. DL systems should account for disc
color and textural information embedded in pixel-rich fundus images so
that they can detect non-glaucomatous optic nerve disease and leverage
the fact that nerve fibre layer atrophy accompanies optic nerve de-
generation. Rather than detect the disc with arbitrary CDR cutoffs,
more work is needed to calibrate DL systems to detect the disc with
manifest VF loss is also needed. Finally, more work on incorporating
OCT data into DL algorithms to detect pathologic optic nerves as well as
progressive structural damage is needed (Muhammad et al., 2017).
Algorithms that not only ascertain if there is optic nerve pathology but
the regional location of pathology would be widely accepted.

3.3. Age-related macular degeneration (AMD)

AMD is another major cause of vision impairment, accounting for
8.7% of all blindness worldwide (Bressler, 2004; Wong et al., 2006b;
Baeza et al., 2009; Wong et al., 2014). It is projected that 288 million
may have some forms of AMD by 2040, with approximately 10% having
intermediate AMD or worse(Wong et al., 2014). The treatment for
neovascular AMD patients has been revolutionized with the advent of
anti-vascular endothelial growth factors (VEGF) (Group et al., 2011;
Chakravarthy et al., 2013), with many countries, e.g. US, Australia,
reporting a significant drop in incident blindness by >50% (Bressler
et al., 2011; Mitchell et al., 2014). The American Academy of Oph-
thalmology recommends an examination for those with the inter-
mediate stage of AMD at least every 2 years, as most of these patients
are usually visually asymptomatic, but have a higher risk of developing
advanced AMD than individuals without the intermediate stage. These
patients will require a referral to the tertiary eye care setting for further
clinical evaluation and investigations (e.g. OCT and fundus fluorescein
angiogram). With ageing population, DL algorithms could be utilized as
alternative tools to aid screening, diagnosis, prognostication and dis-
ease surveillance.

3.3.1. Different AMD classifications
For AMD, multiple classification systems have been proposed apart

from AREDS, including the recent Clinical Classification as worked out
by the Beckman Initiative for Macular Research Classification
Committee (Ferris et al., 2013) and the Three Continent AMD Con-
sortium Severity Scale (Klein et al., 2014) developed by harmonizing
the grading of three large-scale population-based studies. Significant
differences among these grading systems have been reported in dis-
tinguishing early from intermediate AMD when classifying according to
the defined criteria (Brandl et al., 2018). DL-based classification sys-
tems have been developed for referability (Burlina et al., 2018), se-
verity characterization and estimation of 5-year risk (Burlina et al.,
2018) and disease conversion (Schmidt-Erfurth et al., 2018).

3.3.2. Fundus-based DL algorithms
Many of the AI systems for AMD were built using the age-related eye

disease study (AREDS) dataset (Burlina et al., 2018; Grassmann et al.,
2018), while some utilized other datasets (Ting et al., 2017). Similar to
DR and glaucoma, most DL algorithms reported robust diagnostic per-
formance in detecting referable AMD (defined as intermediate AMD or
worse) (Table 4). Furthermore, using the AREDS dataset, Burlina et al.
estimated 5-year risk of AMD progression, with weighted k scores of
0.77 for 4-step severity scales and overall mean estimation error be-
tween 3.5% and 5.3% (Burlina et al., 2018). Similarly, Grassmann et al.
built a DL system for detection of early and late AMD (Grassmann et al.,
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2018), developed using AREDS dataset and tested using using the
Augsburg dataset, consisting of 5555 fundus images that were collected
as part of the collaborative health research in the region of Augsburg,
Germany. Given that the AREDS dataset mostly consist of patients aged
>55 years old, this DL algorithm mis-treated many dominant macula
reflexes as neovascular AMD. Again, this highlights the importance of
training DL algorithms with diverse clinical datasets, consisting of a
wide range of disease phenotypes and patients’ characteristics.

3.3.3. OCT-based DL algorithms
Increasingly, OCT plays a major role in disease detection, prog-

nostication and surveillance in all AMD patients, especially those wet
AMD requiring anti-vascular endothelial growth factor (anti-VEGF).
OCT has established itself as the dominant imaging modality, particu-
larly for the diagnosis and management of AMD (Keane and Sadda,
2014). Thirty million ophthalmic OCT procedures are now performed
every year, a figure comparable in scale to other medical imaging such
as magnetic resonance imaging (MRI) or computed tomography (CT),
and which is more than the sum of all other ophthalmic imaging
modalities combined (Fujimoto and Swanson, 2016). By allowing per-
sonalized therapy for just one retinal disease – neovascular AMD – it is
estimated that OCT imaging has saved the United States government at
least $9 billion (Windsor et al., 2018).

The OCT DL algorithms can be broadly divided into segmentation
and classification tasks. With appropriate segmentation, the DL algo-
rithm can also delineate the abnormal areas on the OCT scans, pro-
viding the surface areas or volume of the abnormal regions. Much of the
initial work in the application of DL to OCT image sets has related to
lesion detection (the process of starting with an unlabelled OCT B-scan
or volume and marking potential abnormalities) and segmentation (the
delineation of margins of any structure, abnormal or otherwise).

3.3.4. OCT segmentation of retinal changes
Lee et al. described the use of DL for segmentation of intraretinal

fluid in OCT images (Table 5) (Lee et al., 2017b). Using Spectralis OCT
images that have intraretinal fluid, including DME, RVO, and AMD,
they selected 934 manually segmented central subfoveal scans for
manual segmentation and a modified U-net for training and testing.
Intraretinal fluid was defined as “an intraretinal hyporeflective space
surrounded by reflective septate”. The DL algorithm showed good
performance for human interrater reliability and the DL system, with
dice coefficients of 0.750 and 0.729, respectively.

Few groups have extended their models to perform segmentation of
pigment epithelium detachment (PED), the formation of a potential
space between the RPE and Bruch's membrane (Zayit-Soudry et al.,
2007; Xu et al., 2017). Schmidt-Erfurth et al. have reported the corre-
lation of PED metrics with visual acuity in patients with neovascular
AMD using a DL-based system (Schmidt-Erfurth et al., 2018). Detailed
description and validation of this PED segmentation approach has not
yet been published but it appears to treat PED as a single entity rather
than a range of specific subtypes. This single PED entity was not found
to significantly affect visual acuity in these cases.

3.3.5. OCT algorithm to detect neovascular AMD
Using close to 100,000 OCT B-scans (50% normal and 50% AMD

scans), Lee et al. reported an accuracy of 87.6% with 84.6% sensitivity
and 91.5% specificity (Lee et al., 2017a). This DL algorithm was de-
veloped using the OCT scans identified via the clinical data from the
electronic health record (EHR). An AMD patient was defined as having
an ICD-9 diagnosis of AMD by a retina specialist, at least one in-
travitreal injection in either eye, and worse than 20/30 vision in the
better seeing eye. Of note, patients with other macular pathology by
ICD-9 code were excluded. The central 11 OCT B-scans from each
macular OCT set were selected, labelled en bloc as either normal or as
AMD, and then used independently for development of the classifica-
tion model. They also adopted occlusion testing to highlight the

abnormal OCT areas by using a blank 20x20 pixel area.

3.3.6. OCT algorithm to triage referral urgency
Using 14,884 OCT scans, De Fauw et al. showed that the DL algo-

rithm was able to detect those who require urgent referrals with ex-
cellent performance (AUC of >0.90), using 2 different OCT systems
(Topcon and Spectralis) (De Fauw, Ledsam et al., 2018). This DL al-
gorithm utilized nine contiguous OCT scans, a three-dimensional U-net
architecture and intermediate tissue representation to output auto-
mated segmentations across 15 different label classes. These labels
encompass a range of novel OCT biomarkers, including three forms of
PED (fibrovascular, serous, and drusenoid) and subretinal hyperre-
flective material. This model segments the posterior hyaloid and epir-
etinal membrane (ERM), to allow enhanced assessment of vi-
treomacular interface disorders, and the RPE, allowing for the
quantification of retinal degeneration and atrophic changes (Figs. 5 and
6). The authors also highlighted the need to perform domain adaptation
to fine tune the DL algorithm that was developed using a completely
different device. Prior to re-training for the new device, the total error
rate for referral suggestions were as high as 46.6%. Nevertheless, by
adding an additional 152 scans (527 manually segmented slices in
total) from the new device, the error rate was brought down to 3.4% (4
out of 116).

3.3.7. OCT algorithm to predict treatment outcome
Schmidt-Erfurth et al., used the HARBOR data to develop ML

models to predict visual acuity in patients receiving ranibizumab for
neovascular AMD (Schmidt-Erfurth et al., 2018). They began by se-
lecting 70% of the HARBOR dataset for analysis. They next applied
automated segmentation algorithms (using both graph-based and DL
approaches) to the OCT scans, allowing segmentation of total retinal
thickness, IRF, SRF, and PED. This allowed them to generate four
morphologic maps and thus a wide range of quantitative structural
variables. They used classical ML techniques (random forest regression)
to predict visual acuity at baseline and at 12 months. For the latter, they
constructed separate models for the visits at baseline and then for
months one to three. Of note, the ranibizumab dose and treatment re-
gimens were included in the model as fixed effects. Their study involved
614 eyes. At baseline, the extracted OCT biomarkers – in particular, the
extent of IRF – were found to predict the visual acuity with an R2 of
21% (i.e., these variables accounted only for 21% of the variation in
baseline visual acuity). As with previous studies, they found that SRF
and PED did not contribute to baseline visual acuity to any meaningful
extent. They also predicted visual acuity at 12 months following in-
itiation of therapy. At baseline, their model accounted for 36% of the
variation of visual acuity. As expected, the performance of the model
improved with each additional month added, so that, by month three, it
accounted for 70% of the variation. In other words, patients with good
visual acuity at baseline, and then at each follow-up for three months,
were likely to have good visual acuity at 12 months.

3.3.8. Future directions
Future research is important to evaluate the generalizability and

cost-effectiveness of these DL systems in a larger international multi-
ethnic cohort. Apart from screening purposes, it will be of great value to
generate new algorithms to predict and prognosticate the functional,
structural and treatment outcome for AMD patients, with appropriate
stratification of the risk profiles. Ideally, the development of the algo-
rithm should incorporate multi-modal approach – clinical data (func-
tional, structural, treatment outcome), fundus photographs and OCT
imaging. who are likely to progress in the long run, coupled with
clinical data and treatment outcome.

To allow true real-world clinical applicability on retinal OCT ima-
ging, in our opinion, DL systems should fulfil a number of criteria. They
should be designed with a specific clinical pathway in mind, be trained
on large and heterogeneous image sets that are representative of this
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Fig. 5. The application of deep learning to the segmentation of retinal optical coherence tomography (OCT) images – the prototype OCT viewer for the Moorfields-
DeepMind deep learning system. In this case, the system correctly segments loss of the retinal pigment epithelium (RPE) highlighting an area of geographic atrophy
(GA) in age-related macular degeneration (AMD). The GA is surrounded by numerous foci of drusenoid pigment epithelium detachment (PED). The partially detached
posterior hyaloid is also clearly delineated.
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Fig. 6. The application of deep learning to the segmentation of retinal optical coherence tomography (OCT) images – the prototype OCT viewer for the Moorfields-
DeepMind deep learning system. In this challenging case of retinal angiomatous proliferation (RAP), the system correctly segments an area of intraretinal fluid (IRF)
overlying an area of subretinal hyperreflective material (SHRM). It classifies the presence of both macular retinal edema and choroidal neovascularization, but
recommends urgent referral to an ophthalmologist. Through the creation of an intermediate tissue representation (seen here as 2D thickness maps for each mor-
phologic parameter), the system provides “interpretability” for the ophthalmologist.
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use case. They should also be capable of providing multi-class classifi-
cations to allow for co-existence of multiple retinal pathologies. Most
importantly, they should be able to achieve performance on par with
retinal specialists as well as being able to provide some measure of
classification certainty for challenging and ambiguous cases.

End-to-end approaches using DL are likely to provide additional
insights, particularly if large, well-labelled datasets can be used for
training. However, a potential challenge in this regard will likely be the
significant compute resources that will be required to train such models
using a high-resolution three-dimensional dataset containing OCTs. It
will also be important to make sure that the resulting model is clinically
meaningful. For example, it may be possible to predict visual outcomes
to high accuracy after 12 months of treatment, but this will be less
useful for the patient if it involves incorporation of multiple time series
data immediately prior to this. It will also be important to determine
what balance of sensitivity and specificity is likely to be clinically
meaningful and thus potentially actionable (for example, in potential
prophylactic treatment of retinal disease prior to onset or progression).
Finally, perhaps even more so than with image classification tasks, it
will be important to prove that any models produced can be generalized
for wide-spread usage, either in clinical trials or in real-world clinical
practice.

3.4. Retinopathy of prematurity

ROP is a retinal vascular disease affecting premature infants, char-
acterized by abnormal fibrovascular proliferation at the boundary of
the vascularized and avascular peripheral developing retina (Fig. 7).
Globally, it is estimated that 15 million babies are born prematurely
each year (Quinn, 2016). In US, the incidence of ROP was 19.9%
(Ludwig et al., 2017). ROP accounts for 6–18% of childhood blindness
(Fleck and Dangata, 1994), causing significant psycho-social impact on
the child and the family (Blencowe et al., 2013). According to the Early
Treatment for ROP (ETROP) trial (Early Treatment for Retinopathy of
Prematurity Cooperative, Good et al., 2010), early treatment has shown
to be beneficial to improve the visual acuity of high-risk ROP patients,
although 9% still eventually became blind. Thus, early screening with
regular monitoring is crucial.

3.4.1. Current challenges with ROP diagnosis
From a public health perspective, the number of premature infants

at risk for ROP is increasing due to a rising number of preterm births
and increased neonatal survival, particularly in the developing world
(Gilbert et al., 1997). Meanwhile, the supply of clinicians who perform
ROP management is limited by logistical challenges of coordinating
examination at the neonational intensive care unit bedside, low phy-
sician reimbursements, and extensive medicolegal liability. From an
educational perspective, training in ROP diagnosis is often inadequate,
further limiting the workforce of ophthalmologists trained to manage
this disease (Chan et al., 2010; Myung et al., 2011; Nagiel et al., 2012;
Wong et al., 2012).

In particular regarding clinical care, there are a number of real-
world challenges regarding plus disease diagnosis:

i. There is often significant variability in diagnostic classification
(plus vs. pre-plus vs. normal), even among experts (Chiang et al., 2007;
Wallace et al., 2008; Slidsborg et al., 2012; Gschlieβer et al., 2015;
Campbell et al., 2016c), leading to inconsistent application of evidence-
based practice (Fleck et al., 2018). This has occurred even in NIH-
funded multicenter trials. For example, in the CRYO-ROP protocol,
confirmation of threshold disease was required by a second unmasked
certified examiner performing dilated ophthalmoscopy. In that setting,
the second examiner disagreed with the first examiner regarding clin-
ical diagnosis of threshold disease in 12% of cases (Reynolds et al.,
2002). Also, in a multi-center study of telemedicine for ROP diagnosis,
nearly 25% of examinations by certified study graders required ad-
judication because the graders disagreed on one of three criteria for

clinically-significant ROP (Daniel et al., 2015).
ii. There is significant variability in diagnostic process among ex-

perts, who have been shown in observational studies to consider dif-
ferent retinal vascular features during assessment of disease severity
(Hewing et al., 2013).

ii. There is evidence that experts frequently deviate from the pub-
lished definition of plus disease when assessing ROP, for example by
considering factors such as venous tortuosity and peripheral retinal
vascular features (Rao et al., 2012; Hewing et al., 2013; Keck et al.,
2013; Campbell et al., 2016a).

iv. The published standard photograph for plus disease was from the
1980s, and has a much smaller field of view and larger magnification
than clinicians are accustomed to seeing during standard examination
methods using indirect ophthalmoscopy or wide-angle retinal images.
There is evidence that this causes bias and inconsistency in diagnosis
(Gelman et al., 2010).

v. Studies have shown that there is a geographical variation in plus
disease diagnosis possibly related to differences in training (Fleck et al.,
2018), and that there may be chronological drift showing a tendency to
diagnose “plus disease” more frequently than in the past (Moleta et al.,
2017).

vi. The multicenter Supplemental Therapeutic Oxygen for
Prethreshold ROP (STOP-ROP) study defined that plus disease is pre-
sent if there is sufficient venous dilation and arterial tortuosity in at
least 2 quadrants, and this definition was incorporated into the 2005
revised ICROP (Group, 2000; Gole et al., 2005). However, there is
variability in how this definition is interpreted (Wallace et al., 2008;
Slidsborg et al., 2012; Hewing et al., 2013; Gschlieβer et al., 2015), and
evidence that this variability may lead to clinically-significant differ-
ences in diagnosis (Slidsborg et al., 2012; Kim et al., 2018).

vii. The ICROP definition of pre-plus disease (Gole et al., 2005) is
somewhat vague. Studies have found significant levels of variability in
diagnosis of pre-plus disease among experts (Chiang et al., 2007;
Wallace et al., 2008).

vii. Vascular abnormality in ROP reflects a continuous spectrum of
disease (Wallace et al., 2000; Gole et al., 2005; Wallace et al., 2011),
whereas clinical management is based on a discrete classification (e.g.
“plus disease” vs. “not plus”) from findings of clinical trials, which re-
quires determining cut-points for abnormality (Tasman, 1988; Reynolds
et al., 2002). Research suggests that diagnostic discrepancy results from
individual clinicians having different cut-points (e.g. “is this plus or pre-
plus disease”), despite having better agreement on relative disease se-
verity (e.g. “which retina looks worse”) (Campbell et al., 2016b;
Kalpathy-Cramer et al., 2016).

3.4.2. DL algorithms on retcam imaging
Early approaches to computer-based image analysis for plus disease

diagnosis were based on quantification of vascular tortuosity and di-
lation (RetCam; Natus Medical Incorporated, Pleasanton, CA)
(Wittenberg et al., 2012). Three such systems have been developed and
validated for wide-angle RetCam images: ROPTool, Retinal Image
multiScale Analysis (RISA), and Computer-Assisted Image Analysis of
the Retina (CAIAR) (Koreen et al., 2007; Wilson et al., 2012; Abbey
et al., 2016). These systems have been evaluated against expert diag-
nostic performance, but have not had real-world application because of
limitations such as being semi-automated (e.g. requiring manual iden-
tification of optic disc or key vascular segments), or having limited
correlation with two-level expert diagnosis (plus disease vs. not plus).

More recently, one system (Imaging & Informatics in ROP, i-ROP)
was developed based on ML methods, in which a vascular metric
termed “acceleration” was found to have best diagnostic performance
in a 6 disc-diameter circular crop of wide-angle RetCam images con-
sidering all retinal vessels combined (Ataer-Cansizoglu et al., 2015).
This system had 95% accuracy for 3-level plus disease diagnosis (vs.
pre-plus or normal) in a test set of 77 images, compared to a reference
standard defined by combining ophthalmoscopic examination by 1
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expert with image-based examination by 3 experts. For the same test set
of 77 images, 3 individual experts had accuracy of 92–96%, and 31 non-
experts had mean accuracy of 81%. However, real-world application of
this system has been limited by the requirement for manual segmen-
tation of images (Ataer-Cansizoglu et al., 2015).

DL has been applied for automated diagnosis of ROP, which could
potentially address barriers to ROP screening on a larger scale (Worrall
et al., 2016). Most recently, Brown et al. developed and validated a
fully-automated DL system (i-ROP DL) for 3-level plus disease diagnosis
(plus vs. pre-plus vs. normal) with an area under the ROC curve of 0.98
for plus disease diagnosis compared to a reference standard defined by
combining ophthalmoscopic examination by 1 expert with image-based
examination by 3 experts. When evaluated in an independent test set of
100 wide-angle RetCam images, the i-ROP DL system achieved 93%
sensitivity and 94% specificity for diagnosis of plus disease, and 100%
sensitivity and 94% specificity for diagnosis of pre-plus or worse dis-
ease. When compared to 8 international ROP experts evaluating the
same 100-image test set, the i-ROP DL system agreed with the con-
sensus diagnosis more frequently than 6 of the 8 experts (Brown et al.,
2018).

3.4.3. Future directions
AI has potential to create assistive technologies to improve the ac-

curacy and consistency of ROP diagnosis by clinicians. In the future,
this could produce quantitative ROP severity scores to facilitate ob-
jective monitoring of disease progression and treatment response.
Future automated systems might provide initial readings of images
captured by neonatal intensive care unit nurses, thereby reducing the
requirement for traditional ophthalmoscopic examinations in the ma-
jority of infants without clinically-relevant disease. These methods may
be particularly applicable to the developing world, where the avail-
ability of ophthalmology and neonatology expertise may be insufficient
to manage the number of premature infants at risk for ROP.

3.5. Miscellanous conditions

3.5.1. Cardiovascular disease
Cardiovascular diseases (CVDs) is the largest cause of non-commu-

nicable deaths worldwide. For 2018, WHO estimated that 17.9 million
people died of CVD worldwide in 2012, accounting for an estimated
31% of global mortality (Roth et al., 2017). Given the ageing popula-
tion, the clinical unmet need will continue to rise over the next few
decades. Most screening programs will face shortage of manpower and
infrastructure, especially in the low-to-middle income countries. Thus,
there is an urgent call for action in exploring novel and economical
screening technologies for these conditions. CVD risk assessment is a
critical first step in managing and preventing heart attacks, strokes, and

other adverse cardiovascular events. Clinicians often utilize risk cal-
culators, such as the Pooled Cohort equations (Stone et al., 2014),
Framingham (Wilson, D'Agostino et al., 1998; National Cholesterol
Education Program Expert Panel on Detection and Treatment of High
Blood Cholesterol in 2002; D'Agostino et al., 2008) and SCORE (Conroy
et al., 2003; Graham et al., 2007), which is based on various factors
from patient history (e.g. age, self-reported sex, smoking status) and
blood samples (e.g. lipid panels) (Goff et al., 2014). Given that ob-
taining these values require a blood draw and fasting prior to the
procedure, some of these parameters such as cholesterol values may be
sparsely available (Hira et al., 2015).

3.5.2. Retina is the window to the cardiovascular health
There have been many efforts to improve risk prediction, particu-

larly in incorporating phenotypic information to further refine risk
prediction such as the addition of coronary artery calcium (Yeboah
et al., 2012) or retinal imaging. The retina is unique in that it is one of
the only places in the body where vascular tissue can be visualized
quickly and noninvasively. Conditions associated with CVD, such as
hypertensive retinopathy and cholesterol emboli, can often manifest in
the eye. Previous studies have shown that various retinal features may
be predictive of cardiovascular events, stroke (Cheung et al., 2013) or
chronic kidney disease (Yip et al., 2017). These features include vessel
caliber (Wang et al., 2006a; Wong et al., 2006; Seidelmann et al.,
2016), bifurcation or tortuosity (Witt et al., 2006), Currently, the as-
sessment of such features requires expert assessors going through a
fairly long and detailed procedure. For example, to measure vessel
diameters, expert assessors must segment vessels, identify specific
segments and adjudicate variations, a fairly time-consuming process to
measure just one feature of the image. While the previous work in this
field is promising, the clinical utility of such features still requires
further study.

3.5.3. AI to predict systemic cardiovascular risk factors
In a recent study, Poplin and Varadarjan et al. (Poplin et al. 2018)

used DL to build a model that predicted cardiovascular risk factors
using retinal fundus images from 48,101 patients from the UK Biobank
study (2017) and 236,234 from the EyePACS population. (2017) The
UK Biobank population was predominantly Caucasian without diabetes
while the EyePACS patients were predominantly Hispanic with dia-
betes. These models were then validated using images from 12,026
patients from UK Biobank, 999 patients from EyePACS, and on an in-
dependent cohort of Asian patients (Ting and Wong, 2018). The model
was fairly accurate for some predictions such as age, self-reported sex,
blood pressure, and smoking status. In addition, the authors also
trained a model to predict the onset of major adverse cardiovascular
events (MACE) within 5 years using the UK Biobank study. For this,

Fig. 7. Continuous spectrum of retinal vascular findings in retinopathy of prematurity (ROP). (A) shows normal posterior retinal vessels. (B) shows pre-plus disease
with mild retinal vascular dilation and tortuosity. (C) shows plus disease with significant retinal vascular dilation and tortuosity.
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MACE was defined as the presence of billing codes for unstable angina,
myocardial infarction, or stroke or death from cardiovascular causes.
Participants that had a MACE prior to the retinal imaging were ex-
cluded. Because the UK Biobank recruited relatively healthy partici-
pants, MACE were rare (631 events occurred within 5 years of retinal
imaging–105 of which were in the clinical validation set). Despite the
limited number of events the model achieved an AUC of 0.70 (95% CI:
0.65, 0.74) from retinal fundus images alone, comparable to the AUC of
0.72 (0.67, 0.76) for the European SCORE risk calculator. Because
cholesterol levels were not available at the time of the study, body mass
index (BMI) was used as a proxy while calculating the SCORE risk
(Cooney et al., 2009; Dudina et al., 2011, 2017).

An explanation technique for DL models called soft-attention was
used to identify relevant anatomical regions that the model may be
using to make its predictions. This generated a heat map showing the
most predictive pixels in the image. A representative example of a
single retinal fundus image with accompanying attention maps
(Simonyan K 2017) for a few predictions is shown in Fig. 8.

Despite these promising results, efforts to improve the performance
and interpretability of these DL models seems indicated, especially for
MACE. In this study, Poplin et al. study did not include blood tests such
as lipid panels in the analysis because it was not available (Poplin et al.,
2018). A substantially larger dataset or a population with more cardi-
ovascular events may enable more accurate DL models to be trained
and evaluated with high confidence. Training with larger datasets and
more clinical validation will help determine whether retinal fundus
images may be able to augment or replace some of the other markers,
such as lipid panels, to yield more accurate predictions. Lastly, It is also
important to explore how this DL algorithm can be incorporated into
the current cardiovascular risk calculators to improve the predictive
power for 5-year MACE risks.

3.5.4. AI for refractive error
In the previous examples with CVD and retinal imaging, DL has also

shown great promise in discovering new associations from imaging or
quantifying known associations to a high level of accuracy. Another
example of this is the recent work done in applying DL for refractive
error. While physicians would generally have difficulty predicting re-
fractive error from a retinal fundus image, DL techniques are able to
predict this fairly accurately. Given this somewhat surprising finding,
the authors also went on to leverage attention maps to determine the
parts of an image most relevant for the prediction. They found that the
attention maps consistently highlighted the fovea as a feature that was
important for the prediction (Fig. 9). The model also frequently high-
lighted retinal vessels and cracks in retinal pigment. The model seemed
to predict only the spherical component of refractive error well. The
accuracy of the refractive error prediction seemed to decrease with a
smaller field of view, poorer image quality, and possibly macular le-
sions.

The ability to train accurate models without feature engineering
combined with explanation techniques make DL an attractive tool for
scientific discovery. Improvements in and experimentation with other
explanation methods for DL models will help us understand these novel
signals. While these heatmaps can serve as starting points, other tech-
niques can be leveraged to further help explain model predictions –
such as selectively including or excluding parts of the images during
training to measure the relative importance of each of these regions to
the prediction task. The identification of new features creates new re-
search opportunities for better understanding of the development and
management of disease. For researchers, instead of first guessing and
then testing hypotheses one by one, they could use neural networks to
directly make the prediction of interest and then utilize attention
techniques to generate targeted hypotheses. For clinicians, this work
also suggests that large datasets could be leveraged to fuel the devel-
opment of new non-invasive imaging biomarkers for a variety of dis-
eases, from ophthalmological to systemic diseases.

4. Potential challenges for AI implementation within clinical
practice

First, AI approaches in ocular disease require a large number of
images. Data sharing from different centers is an obvious approach to
increase the number of input data for network training. However,
Increasing the number of data elements does not necessarily enhance
the performance of a network. For example, adding large amounts of
data from healthy subjects will most likely not improve the classifica-
tion of disease. Moreover, very large datasets for training may increase
the likelihood of making spurious connections (Gomes, 2014). For use
of retinal images to predict and classify ocular and systemic disease a
clear guideline for the optimal number of cases for training is needed.

Second, when data are to be shared between different centers reg-
ulations and state privacy rules need to be considered. These may differ
between different countries and while they are aimed to ensure pa-
tients' privacy they sometimes form barriers for effective research in-
itiatives and patient's care. Generally, there is an agreement that images
and all other patient-related data need to be anonymized and patients'
consent has to be obtained before sharing is possible. This requires
technical solutions including data storage, management, and analysis.
The implementation of such solutions is time and cost-intensive. It re-
quires hardware and software investments, expertise and is labor-in-
tensive. Investing on data-sharing is a difficult decision, because the
financial requirements are high and the benefit is not immediate.
Nonetheless, all the AI research groups worldwide should continue to
collaborate to rectify this barrier, aiming to harness the power of big
data and DL to advance the discovery of scientific knowledge.

Third, the decision for data sharing can sometimes be influenced by
the fear that competitors explore novel results first. This can even occur
within an institution and usually it is the weaker members of a colla-
borative team that fear about their career opportunities. Indeed, key
performance indicators as defined by funding bodies or universities
including number of publications, impact factor and citation metrics
may represent major hurdles for effective data sharing. On an institu-
tional level the filing of collaboration agreements with other partners is
a long and labor-intensive procedure that slows down analysis of shared
data. Such periods may even be prolonged when intellectual property
issues are to be negotiated. Given that these are usually multiple-in-
stitution agreements time spans of one year or more are common. This
is associated with the risk that other teams are faster and that colla-
borators loose interest in the topic.

Fourth, in the training set, a large number of images is required that
need to be well phenotyped for different diseases (e.g. DR, glaucoma
and AMD). The performance of the network will depend on the number
of images, the quality of the images, and how representative the data
are for the entire spectrum of the disease. In addition, the applicability
in clinical practice will depend on the quality of the phenotyping
system and the ability of the human graders to follow this system.

Fifth, while the number of images that are available for diseases
such as glaucoma, DR and AMD is sufficient to train networks, orphan
diseases represent a problem because of the lack of cases. One approach
is to create synthetic fundus images that mimic the disease. This is,
however, a difficult task and current approaches have not proven to be
successful (Fiorini, 2016; Menti et al., 2016). In addition, it is doubtful
that competent authorities would approve an approach where data do
not stem from real patients. Nevertheless, generation of synthetic
images is an interesting approach that may have potential for future
applications.

Sixth, the capabilities of DL should not be construed as competence.
What networks can provide is excellent performance in a well-defined
task. Networks are able to classify DR and detect risk factors for AMD
but they are not a substitute for a retina specialist. As such the inclusion
of novel technology into DL systems is difficult, because it will require
again a large number of data with this novel technology. Inclusion of
novel technology into network based classification systems is a long and
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costly effort. Given that there are many novel imaging approaches on
the horizon including OCT-angiography or Doppler OCT (Doblhoff-Dier
et al., 2014; Leitgeb et al., 2014), this may have considerable potential
for diagnosis, classification and progression analysis, this is an im-
portant challenge for the future.

Seventh, providing healthcare is logistically complex and solutions
differ significantly between different countries. Implementing AI-based
solution into such workflow is challenging and requires sufficient
connectivity. A concerted effort from all stakeholders is required in-
cluding regulators, insurances, hospital managers, IT teams, physicians,
and patients. Implementation needs to be easy and straightforward
without administrative hurdles to be accepted. Quick dissemination of
results is an important aspect in this respect. Another step for AI being
implemented into a clinical setting is a realistic business model that
needs to consider the specific interest of the patient, the payer, and the
provider. Main factors to be considered in this respect are reimburse-
ment, efficiency, and unmet clinical need. The business model also
needs to consider the long-term implications, because continuous con-
nectivity and the capacity to learn is associated with the ability to
improve clinical performance over time.

Eighth, there is lack of ethical and legal regulations for DL algo-
rithms. These concerns can occur during the data sourcing, product
development and clinical deployment stage (Char et al., 2018; Vayena
et al., 2018). Char et al. stated that the intent behind the design of DL
algorithms also needs to be considered (Char et al., 2018). One needs to
be careful about building racial biases into the healthcare algorithms,
especially when the healthcare deliveries already varies by race.
Moreover, given the growing importance of quality indicators for public
evaluations and reimbursement rates, there may be a tendency to de-
sign the DL algorithms that would result in better performance metrics,
but not necessarily better clinical care for the patients. Traditionally, a
physician could withhold the patients' information from the medical
record in order to keep it confidential. In the era of digital health record
integrated with the deep-learning-based decision support, it would be
hard to withhold patients’ clinical data from the electronic system.
Hence, the medical ethics surrounding these issues may need to evolve

over time.

5. Conclusions

Given the ageing population and the ever-increasing expenditure for
health care there is a need to innovations. Three main areas are the
targets for such solutions: To improve the general health of a popula-
tion, to lower the costs of healthcare, and to improve patient's per-
ception. AI solutions are among the most promising solutions to tackle
these issues, and it has the potential to revolutionize how we live and
practice medicine. It likely will change the field rapidly in the next few
decades, although several challenges need to be resolved to increase AI
adoption in healthcare. Many techniques have been described in at-
tempt to unravel the ‘black box’ nature of DL systems, but more need to
be done. Furthermore, it is also useful to develop more predictive al-
gorithms to better stratify patients into different risks groups and
treatment arms, aiming to deliver personalized medicine to the global
population.
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hyperopic (SE worse than 5.0) eyes conditioned on eye position. Scale bar on right denotes attention pixel values, which are between 0 and 1 (exclusive), with the
sum of all values equal to be one.
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